thought this article was cool:
Full article here:
http://www.berkeley.edu/news/media/releases/2008/02/07_colugo.shtml
attached a photo
Tracking gliding behavior in the 'flying' lemur
By Robert Sanders, Media Relations | 07 February 2008
BERKELEY – The "flying" lemur of Malaysia is the champion of all gliding mammals, able to drop from the forest canopy, glide more than the length of two football fields, execute 90-degree turns and then alight gently on a tree trunk.
Researchers in Singapore, the United Kingdom and at the University of California, Berkeley, are discovering how these animals move with the help of a miniature backpack outfitted with accelerometers. These devices, which measure acceleration, have motion-detecting technology similar to that in Wii remote controllers, which allow electronic game players to simulate the swing of a golf club or baseball bat.
A feeding colugo sports a backpack containing accelerometers and flash memory to record several day's worth of data on its gliding, in particular take-offs and landings. The device is glued to a shaved area on the animal's back and falls off after a few days.The researchers' findings not only are advancing understanding of the behavior and biomechanics of gliding animals ranging from ants and snakes to squirrels, but could also help improve the design of flexible winged aircraft such as hang gliders and micro air vehicles, they say.
The team reported its findings this week in the journal Proceedings of the Royal Society B.
The colugo, often called the flying lemur, even though it doesn't fly and is not a lemur, is nevertheless a close relative of the primates, which include lemurs as well as humans. Common throughout Southeast Asia, the colugo looks like a very large squirrel with membranous skin stretching from each limb and even between its toes to catch the wind and work as a parachute. When fully spread, the skin flaps reach the size of a large doormat.
"This makes them quite maneuverable," said first author Greg Byrnes, a graduate student in UC Berkeley's Department of Integrative Biology, noting that he has observed colugos gliding toward one tree and, seemingly changing their minds in midair, dodge around it and land on a different tree. "I've seen animals gliding and get to a place where foliage is dense, and they will actually collapse their membrane, haul through the leaves and then open up and glide some more. Obstacles are not much of an issue for them."
Its shyness, camouflage and nocturnal habits, however, make the colugo difficult to study, even though it lives comfortably in forested areas of big cities like Singapore.
Laboratory studies of gliding mammals, such as the North American flying squirrel, have given hints to how these animals leap and glide, but Byrnes and former post-doctoral fellow Andrew J. Spence, now at the Royal Veterinary College in England, wanted to study flying mammals in their natural habitat. They are particularly interested in the forces these animals exert during take-off and landing and how these forces depend on the gliding distance.